Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(45): 9802-9812, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37937341

RESUMO

The abundance and isotopic composition of noble gases dissolved in water have many applications in the geosciences. In recent years, new analytical techniques have opened the door to the use of high-precision measurements of noble gas isotopes as tracers for groundwater hydrology, oceanography, mantle geochemistry, and paleoclimatology. These analytical advances have brought about new measurements of solubility equilibrium isotope effects (SEIEs) in water (i.e., the relative solubilities of noble gas isotopes) and their sensitivities to the temperature and salinity. Here, we carry out a suite of classical molecular dynamics (MD) simulations and employ the theoretical method of quantum correction to estimate SEIEs for comparison with experimental observations. We find that classical MD simulations can accurately predict SEIEs for the isotopes of Ar, Kr, and Xe to order 0.01‰, on the scale of analytical uncertainty. However, MD simulations consistently overpredict the SEIEs of Ne and He by up to 40% of observed values. We carry out sensitivity tests at different temperatures, salinities, and pressures and employ different sets of interatomic potential parameters and water models. For all noble gas isotopes, the TIP4P water model is found to reproduce observed SEIEs more accurately than the SPC/E and TIP4P/ice models. Classical MD simulations also accurately capture the sign and approximate magnitude of temperature and salinity sensitivities of SEIEs for heavy noble gases. We find that experimental and modeled SEIEs generally follow an inverse-square mass dependence, which implies that the mean-square force experienced by a noble gas atom within a solvation shell is similar for all noble gases. This inverse-square mass proportionality is nearly exact for Ar, Kr, and Xe isotopes, but He and Ne exhibit a slightly weaker mass dependence. We hypothesize that the apparent dichotomy between He-Ne and Ar-Kr-Xe SEIEs may result from atomic size differences, whereby the smaller noble gases are more likely to spontaneously fit within cavities of water without breaking water-water H-bonds, thereby experiencing softer collisions during translation within a solvation shell. We further speculate that the overprediction of simulated He and Ne SEIEs may result from the neglection of higher-order quantum corrections or the overly stiff representation of van der Waals repulsion by the widely used Lennard-Jones 6-12 potential model. We suggest that new measurements of SEIEs of heavy and light noble gases may represent a novel set of constraints with which to refine hydrophobic solvation theories and optimize the set of interatomic potential models used in MD simulations of water and noble gases.

2.
Nat Commun ; 13(1): 5443, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114188

RESUMO

Here we use high-precision carbon isotope data (δ13C-CO2) to show atmospheric CO2 during Marine Isotope Stage 4 (MIS 4, ~70.5-59 ka) was controlled by a succession of millennial-scale processes. Enriched δ13C-CO2 during peak glaciation suggests increased ocean carbon storage. Variations in δ13C-CO2 in early MIS 4 suggest multiple processes were active during CO2 drawdown, potentially including decreased land carbon and decreased Southern Ocean air-sea gas exchange superposed on increased ocean carbon storage. CO2 remained low during MIS 4 while δ13C-CO2 fluctuations suggest changes in Southern Ocean and North Atlantic air-sea gas exchange. A 7 ppm increase in CO2 at the onset of Dansgaard-Oeschger event 19 (72.1 ka) and 27 ppm increase in CO2 during late MIS 4 (Heinrich Stadial 6, ~63.5-60 ka) involved additions of isotopically light carbon to the atmosphere. The terrestrial biosphere and Southern Ocean air-sea gas exchange are possible sources, with the latter event also involving decreased ocean carbon storage.


Assuntos
Dióxido de Carbono , Camada de Gelo , Carbono , Ciclo do Carbono , Isótopos de Carbono , Água do Mar
3.
Proc Natl Acad Sci U S A ; 116(30): 14881-14886, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285336

RESUMO

The energy imbalance at the top of the atmosphere determines the temporal evolution of the global climate, and vice versa changes in the climate system can alter the planetary energy fluxes. This interplay is fundamental to our understanding of Earth's heat budget and the climate system. However, even today, the direct measurement of global radiative fluxes is difficult, such that most assessments are based on changes in the total energy content of the climate system. We apply the same approach to estimate the long-term evolution of Earth's radiative imbalance in the past. New measurements of noble gas-derived mean ocean temperature from the European Project for Ice Coring in Antarctica Dome C ice core covering the last 40,000 y, combined with recent results from the West Antarctic Ice Sheet Divide ice core and the sea-level record, allow us to quantitatively reconstruct the history of the climate system energy budget. The temporal derivative of this quantity must be equal to the planetary radiative imbalance. During the deglaciation, a positive imbalance of typically +0.2 W⋅m-2 is maintained for ∼10,000 y, however, with two distinct peaks that reach up to 0.4 W⋅m-2 during times of substantially reduced Atlantic Meridional Overturning Circulation. We conclude that these peaks are related to net changes in ocean heat uptake, likely due to rapid changes in North Atlantic deep-water formation and their impact on the global radiative balance, while changes in cloud coverage, albeit uncertain, may also factor into the picture.

4.
Nature ; 553(7686): 39-44, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29300008

RESUMO

Little is known about the ocean temperature's long-term response to climate perturbations owing to limited observations and a lack of robust reconstructions. Although most of the anthropogenic heat added to the climate system has been taken up by the ocean up until now, its role in a century and beyond is uncertain. Here, using noble gases trapped in ice cores, we show that the mean global ocean temperature increased by 2.57 ± 0.24 degrees Celsius over the last glacial transition (20,000 to 10,000 years ago). Our reconstruction provides unprecedented precision and temporal resolution for the integrated global ocean, in contrast to the depth-, region-, organism- and season-specific estimates provided by other methods. We find that the mean global ocean temperature is closely correlated with Antarctic temperature and has no lead or lag with atmospheric CO2, thereby confirming the important role of Southern Hemisphere climate in global climate trends. We also reveal an enigmatic 700-year warming during the early Younger Dryas period (about 12,000 years ago) that surpasses estimates of modern ocean heat uptake.


Assuntos
Camada de Gelo/química , Oceanos e Mares , Temperatura , Regiões Antárticas , Atmosfera/química , Dióxido de Carbono/análise , Clima , História do Século XXI , História Antiga , Temperatura Alta , Gases Nobres/análise , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...